Exponential Convergence for Cellular Neural Networks with Time-Varying Delays in the Leakage Terms

نویسندگان

  • Zhibin Chen
  • Junxia Meng
  • Narcisa C. Apreutesei
چکیده

and Applied Analysis 3 H2 for all t > 0 and i, j ∈ {1, 2, . . . , n}, there exist constants η > 0, λ > 0 and ξi > 0 such that ∫∞ 0 ∣ ∣Kij u ∣ ∣edu < ∞, −η > − [ ci t − λe−ληi t − ηi t ci t ( λ c i e λη i )] ei t ξi n ∑ j 1 L̃j (∣ ∣aij t ∣ ∣eij t a ijηi t ci t e ληi t e ij ) ξj n ∑ j 1 Lj ∫∞ 0 ∣ ∣Kij u ∣ ∣edu (∣ ∣bij t ∣ ∣ b ijηi t ci t e ληi t ) ξj ; 1.5 H3 Ii t O e−λt t → ±∞ , i 1, 2, . . . , n. The initial conditions associated with system 1.1 are of the form xi s φi s , s ∈ −∞, 0 , i 1, 2, . . . , n, 1.6 where φi · denotes real-valued-bounded continuous function defined on −∞, 0 . 2. Main Results Theorem 2.1. Let H1 , H2 , and H3 hold. Then, for every solution Z t x1 t , x2 t , . . . , xn t T of system 1.1 with any initial value φ φ1 t , φ2 t , . . . , φn t T , there exists a positive constant K such that |xi t | ≤ Kξie−λt ∀t > 0, i 1, 2, . . . , n. 2.1 Proof. Let Z t x1 t , x2 t , . . . , xn t T be a solution of system 1.1 with any initial value φ φ1 t , φ2 t , . . . , φn t T , and let Xi t exi t , i 1, 2, . . . , n. 2.2 4 Abstract and Applied Analysis In view of 1.1 , we have X′ i t λXi t e λt ⎡ ⎣−ci t xi ( t − ηi t ) n ∑ j 1 aij t fj ( xj ( t − τij t )) n ∑ j 1 bij t ∫∞ 0 Kij u gj ( xj t − u ) du Ii t ⎤ ⎦ λXi t − ci t ei t Xi ( t − ηi t ) e ⎡ ⎣ n ∑ j 1 aij t fj ( e−λ t−τij t Xj ( t − τij t )) n ∑ j 1 bij t ∫∞ 0 Kij u gj ( e−λ t−u Xj t − u ) du Ii t ⎤ ⎦, i 1, 2, . . . , n. 2.3 Let M max i 1,2,..., n sup s≤0 { e ∣φi s ∣ } . 2.4 From 1.3 , H2 , and H3 , we can choose a positive constant K such that Kξi > M, η > [ ηi t ci t ei t 1 ] supt∈R ∣Ii t e ∣ K , ∀t > 0, i 1, 2, . . . , n. 2.5 Then, it is easy to see that |Xi t | ≤ M < Kξi ∀t ≤ 0, i 1, 2, . . . , n. 2.6 We now claim that |Xi t | < Kξi ∀t > 0, i 1, 2, . . . , n. 2.7 If this is not valid, then, one of the following two cases must occur: 1 there exist i ∈ {1, 2, . . . , n} and t∗ > 0 such that Xi t∗ Kξi, ∣Xj t ∣∣ < Kξj ∀t < t∗, j 1, 2, . . . , n, 2.8 2 there exist i ∈ {1, 2, . . . , n} and t∗∗ > 0 such that Xi t∗∗ −Kξi, ∣Xj t ∣∣ < Kξj ∀t < t∗∗, j 1, 2, . . . , n. 2.9 Now, we consider two cases. Abstract and Applied Analysis 5 Case i. If 2.8 holds. Then, from 2.3 , 2.5 , and H1 − H3 , we have 0 ≤ X′ i t∗ λXi t∗ − ci t∗ ei t∗ Xi ( t∗ − ηi t∗ ) e ∗ ⎡ ⎣ n ∑ j 1 aij t∗ fj ( e−λ t ∗−τij t∗ Xj ( t∗ − τij t∗ ))and Applied Analysis 5 Case i. If 2.8 holds. Then, from 2.3 , 2.5 , and H1 − H3 , we have 0 ≤ X′ i t∗ λXi t∗ − ci t∗ ei t∗ Xi ( t∗ − ηi t∗ ) e ∗ ⎡ ⎣ n ∑ j 1 aij t∗ fj ( e−λ t ∗−τij t∗ Xj ( t∗ − τij t∗ )) n ∑ j 1 bij t∗ ∫∞ 0 Kij u gj ( e−λ t ∗−u Xj t∗ − u ) du Ii t∗ ⎤ ⎦ λXi t∗ − ci t∗ ei t∗ Xi t∗ ci t∗ ei t∗ [ Xi t∗ −Xi ( t∗ − ηi t∗ )] e ∗ ⎡ ⎣ n ∑ j 1 aij t∗ fj ( e−λ t ∗−τij t∗ Xj ( t∗ − τij t∗ )) n ∑ j 1 bij t∗ ∫∞ 0 Kij u gj ( e−λ t ∗−u Xj t∗ − u ) du Ii t∗ ⎤ ⎦ − [ ci t∗ ei t ∗ − λ ] Xi t∗ ci t∗ ei t ∗ ∫ t∗ t∗−ηi t∗ X′ i s ds e ∗ ⎡ ⎣ n ∑ j 1 aij t∗ fj ( e−λ t ∗−τij t∗ Xj ( t∗ − τij t∗ )) n ∑ j 1 bij t∗ ∫∞ 0 Kij u gj ( e−λ t ∗−u Xj t∗ − u ) du Ii t∗ ⎤ ⎦ − [ ci t∗ ei t ∗ − λ ] Xi t∗ ci t∗ ei t ∗ ∫ t∗ t∗−ηi t∗ ⎡ ⎣λXi s − ci s ei s Xi ( s − ηi s ) e ⎛ ⎝ n ∑ j 1 aij s fj ( e−λ s−τij s Xj ( s − τij s )) n ∑ j 1 bij s ∫∞ 0 Kij u gj ( e−λ s−u Xj s − u ) du Ii s ⎞ ⎠ ⎤ ⎦ds e ∗ ⎡ ⎣ n ∑ j 1 aij t∗ fj ( e−λ t ∗−τij t∗ Xj ( t∗ − τij t∗ )) n ∑ j 1 bij t∗ ∫∞ 0 Kij u gj ( e−λ t ∗−u Xj t∗ − u ) du Ii t∗ ⎤ ⎦ 6 Abstract and Applied Analysis ≤ − [ ci t∗ ei t ∗ − λ − ηi t∗ ci t∗ ei t∗ ( λ c i e λη i )] ξiK n ∑ j 1 L̃j (∣ ∣aij t∗ ∣ ∣eij t ∗ a ijηi t ∗ ci t∗ ei t ∗ e ij ) ξjK n ∑ j 1 Lj ∫∞ 0 ∣ ∣Kij u ∣ ∣edu (∣ ∣bij t∗ ∣ ∣ b ijηi t ∗ ci t∗ ei t ∗ ) ξjK [ ηi t∗ ci t∗ ei t ∗ 1 ] supt∈R ∣ ∣ ∣Ii t e ∣ ∣ ∣ { − [ ci t∗ − λe−ληi t∗ − ηi t∗ ci t∗ ( λ c i e λη i )] ei t ∗ ξi n ∑ j 1 L̃j (∣ ∣aij t∗ ∣ ∣eij t ∗ a ijηi t ∗ ci t∗ ei t ∗ e ij ) ξj n ∑ j 1 Lj ∫∞ 0 ∣Kij u ∣eλudu (∣bij t∗ ∣ b ijηi t ∗ ci t∗ ei t ∗ ) ξj [ ηi t∗ ci t∗ ei t ∗ 1 ] supt∈R ∣Ii t e ∣ K } K < { −η [ ηi t∗ ci t∗ ei t ∗ 1 ] supt∈R ∣Ii t e ∣ K } K

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint influence of leakage delays and proportional delays on almost periodic solutions for FCNNs

This paper deals with fuzzy cellular neural networks (FCNNs) with leakage delays and proportional delays. Applying the differential inequality strategy, fixed point theorem and almost periodic function principle, some sufficient criteria which ensure the existence and global attractivity of a unique almost periodic solution for fuzzy cellular neuralnetworks with leakage delays and p...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

Anti-periodic Solutions for A Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Time-varying Delays in the Leakage Terms

This paper is concerned with the existence and exponential stability of anti-periodic solutions of a class of shunting inhibitory cellular neural networks with continuously distributed delays and time-varying delays in the leakage terms. By using differential inequality techniques, some verifiable and practical delay-dependent criteria on the existence and exponential stability of anti-periodic...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Global exponential stability of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms

In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M -matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in t...

متن کامل

Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays∗

In this paper, we consider a class of high-order cellular neural networks (HCNNs) model with time-varying delays in the leakage terms. We give some sufficient conditions which guarantee the exponential stability of pseudo almost periodic solutions for the model. The obtained results complement with some recent ones in the liteature.The technique of proof involves the exponential dichotomy theor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014